Kraft cooking of birch wood chips: differences between the dissolved organic material in pore and bulk liquor

Author:

Kron Linus1ORCID,Marion de Godoy Carolina1ORCID,Hasani Merima12,Theliander Hans12

Affiliation:

1. Division of Forest Products and Chemical Engineering, Department of Chemistry and Chemical Engineering , Chalmers University of Technology , Chalmersplatsen 4, 412 96 Gothenburg , Sweden

2. Wallenberg Wood Science Center , Chalmers University of Technology , 412 96 Gothenburg , Sweden

Abstract

Abstract The delignification of birch chips during kraft pulping was investigated, targeting both the impregnation and cooking steps. Wood chips were impregnated using white liquor, white liquor + NaCl, water or NaCl aqueous solution. Then, the chips were cooked in batch autoclaves applying the same constant composition cooking conditions for all samples. Pulp and two fractions of black liquor (bulk liquor and centrifuged liquor representing the liquor inside the wood chips and fibers) were collected after different pulping times and analyzed for lignin and carbohydrate content. The dissolved wood components were precipitated from selected samples and characterized with respect to composition, molecular weight distribution and structural motifs. Cooking chemicals in the impregnation liquors led to faster delignification and xylan removal during cooking. Higher contents of lignin and xylan were measured in the lumen than in the bulk. The concentration profiles also showed accumulation of dissolved material in the lumen over time, suggesting significant mass transport limitation from lumen to bulk. Further analysis revealed higher fragmentation/degradation of dissolved material with increasing pulping time and in the bulk when compared to the lumen liquor, as demonstrated by the lower molecular weights and the changes in chemical shifts in the NMR spectra.

Funder

VINNOVA

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3