Kraft pulping of model wood chips: local impact of process conditions on hardwood delignification and xylan retention

Author:

Marion de Godoy Carolina1ORCID,Hasani Merima12,Theliander Hans12

Affiliation:

1. Division of Forest Products and Chemical Engineering, Department of Chemistry and Chemical Engineering , 11248 Chalmers University of Technology , Chalmersplatsen 4, 412 96 Gothenburg , Sweden

2. Wallenberg Wood Science Center , Chalmers University of Technology , 412 96 Gothenburg , Sweden

Abstract

Abstract Local evolution of delignification and xylan removal inside wood chips was investigated throughout the initial stages of kraft cooking. Model chips of birch sapwood were pulped at 145, 155 and 165 °C, utilizing white liquors with hydroxide content ranging from 0.25 to 0.55 mol/kg. The composition of different sections in each cooked sample was then determined. Xylan was isolated from selected samples and analyzed using size exclusion chromatography and HSQC NMR. Most changes in concentration and structure of residual xylan occurred early in the process (<45 min). Furthermore, xylan samples isolated from the tissue of different cooked chips had similar average molecular weights, indicating that temperature and alkali content had little impact over the extent of reactions affecting residual xylan. In contrast, xylan dissolution was significantly dependent on pulping conditions, increasing with hydroxide concentration. The lignin profile inside the cooked chips also varied with alkali content and temperature, and it was shown to be more uniform when applying low cooking temperatures (145 °C). Finally, increased delignification and xylan removal were detected close to the transverse surfaces of chips (likely due to the fast mass transport in vessels/lumen), implying that anatomical features of wood can have a significant impact on pulping.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3