A corrugated and lens based miniaturized antipodal Vivaldi antenna for 28 GHz and 38 GHz bands applications

Author:

Dixit Amruta S.1,Kumar Sumit1ORCID,Abegaonkar Mahesh2

Affiliation:

1. Electronics and Telecommunications Department , Symbiosis International Deemed University, Symbiosis Institute of Technology , Pune , India

2. Centre for Applied Research in Electronics , Indian Institute of Technology , Delhi , India

Abstract

Abstract The paper presents a dualband and compact antipodal Vivaldi antenna (AVA) array by using a dielectric lens (DL) and corrugations for 5G applications. The proposed novel antenna provides very high efficiency and it alleviates beam titling very effectively. Its efficiency is in the range of 95.93%–97.52% whereas the H plane beam titling is ± 1 ° $\pm 1{}^{\circ}$ over most of the frequency range. The antenna frequency response is improved by incorporating corrugations which results in the antenna miniaturization. The designed AVA array size is 2.86 × 3.58 × 0.06 λ g 3 ${{\lambda }_{g}}^{3}$ (for lower guided frequency). The proposed dualband antenna operates from 24.17 GHz to 29.37 GHz and 30.76 GHz to 40.58 GHz. These frequency bands cover 28 GHz and 38 GHz bands of 5G communications. Next, the front-to-back ratio is improved significantly which further results in the gain enhancement. Also, the grooves in the feeding network minimize reverse power reflections. The radiation pattern is stable and it shows that the designed antenna is a directional antenna. The antenna is designed, simulated, and tested by using a network analyzer and anechoic chamber. The testing and simulated results indicate that the proposed AVA array is the best candidate to integrate it in 5G devices.

Funder

Symbiosis International Deemed University

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3