A Highly Compact Antipodal Vivaldi Antenna Array for 5G Millimeter Wave Applications

Author:

Dixit Amruta SarvajeetORCID,Kumar SumitORCID,Urooj ShabanaORCID,Malibari Areej

Abstract

This paper presents a compact 1 × 4 antipodal Vivaldi antenna (AVA) array for 5G millimeter-wave applications. The designed antenna operates over 24.19 GHz–29.15 GHz and 30.28 GHz–40.47 GHz frequency ranges. The proposed antenna provides a high gain of 8 dBi to 13.2 dBi and the highest gain is obtained at 40.3 GHz. The proposed antenna operates on frequency range-2 (FR2) and covers n257, n258, n260, and n261 frequency bands of 5G communication. The corrugations and RT/Duroid 5880 substrate are used to reduce the antenna size to 24 mm × 28.8 mm × 0.254 mm, which makes the antenna highly compact. Furthermore, the corrugations play an important role in the front-to-back ratio improvement, which further enhances the gain of the antenna. The corporate feeding is optimized meticulously to obtain an enhanced bandwidth and narrow beamwidth. The radiation pattern does not vary over the desired operating frequency range. In addition, the experimental results of the fabricated antenna coincide with the simulated results. The presented antenna design shows a substantial improvement in size, gain, and bandwidth when compared to what has been reported for an AVA with nearly the same size, which makes the proposed antenna one of the best candidates for application in devices that operate in the millimeter frequency range.

Funder

Princess Nourah Bint Abdulrahman University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Analysis of C/OCGA Sparse Horn Antenna Structures at Different Frequencies;2023 IEEE XVI International Scientific and Technical Conference Actual Problems of Electronic Instrument Engineering (APEIE);2023-11-10

2. Neutralized meander line patch antipodal vivaldi defected ground millimeter-wave (mm-wave) antenna array;AEU - International Journal of Electronics and Communications;2023-07

3. A Vivaldi antenna with stepped bending structure applied to 5G;2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT);2023-05-14

4. Broadband dual‐podal multilayer Vivaldi antenna array for remote sensing applications;IET Microwaves, Antennas & Propagation;2023-05-09

5. Design requirements for mm-wave integrated optical beamforming networks;Next-Generation Optical Communication: Components, Sub-Systems, and Systems XII;2023-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3