Enzyme-assisted pulp refining: an energy saving approach

Author:

Kumar Amit1,Ram Chhotu2,Tazeb Adebabay1

Affiliation:

1. Department of Biotechnology , College of Natural and Computational Sciences, Debre Markos University , Debre Markos , Ethiopia

2. Department of Chemical Engineering , College of Engineering and Technology Adigrat University , Adigrat , Ethiopia

Abstract

Abstract Energy conservation has become an essential step in pulp and paper industry due to diminishing fossil reserves and high cost of energy. Refining is a mechanical treatment of pulp that modifies the structure of the fibres in order to achieve desired paper-making properties. However, it consumes considerable amount of energy. The electrical power consumption has a direct impact on paper manufacturing cost. Therefore, there is a requirement to minimize the energy cost. Enzyme-assisted refining is the environment friendly option that reduces the energy consumption for papermaking. Enzyme-assisted refining is defined as mechanical refining after pretreatment of pulp with enzymes such as cellulases and hemicellulases. It not only reduces the energy consumption but also improves the quality of finished paper. Enzymes improve the beatability of pulp at same refining degree (°SR) and desired paper properties can be achieved at decreased refining time. The selection of suitable enzyme, optimization of enzyme dose and appropriate reaction time are the key factors for energy reduction and pulp quality improvement during enzyme-assisted refining.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3