Applications of magnetoliposomes with encapsulated doxorubicin for integrated chemotherapy and hyperthermia of rat C6 glioma

Author:

Babincová Natália1,Sourivong Paul2,Babinec Peter3,Bergemann Christian4,Babincová Melánia3,Durdík Štefan5

Affiliation:

1. Department of Dermatovenerology, Faculty of Medicine , Comenius University, Mickiewiczova 13 , 813 69 Bratislava , Slovakia

2. Oklahoma Cancer Specialists and Research Institute, 12697 East 51st Street South , Tulsa, OK 74146 , USA

3. Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics , Comenius University, Mlynská dolina F1 , 842 48 Bratislava , Slovakia

4. Chemicell GmbH, Berlin, Eresburgstrasse 22-23 , 12103 Berlin , Germany

5. Department of Surgical Oncology, Saint Elisabeth Cancer Institute and Faculty of Medicine , Comenius University, Heydukova 10 , Bratislava , Slovakia

Abstract

Abstract There is substantial evidence regarding enhanced antitumor cytotoxicity of selected chemotherapeutic agents by appropriate heat exposure (40–44°C). Based upon these results, the integration of hyperthermia as an additional treatment modality given simultaneously with systemic chemotherapy is currently of considerable interest. Hyperthermia can be induced by alternating magnetic field and magnetic nanoparticles. Thus, we have used thermosensitive magnetoliposomes that contained superparamagnetic iron oxide nanoparticles and doxorubicin for in vitro and in vivo therapy of rat glioma C6. The results showed that magnetoliposomes can be specifically heated to 43°C (phase transition temperature of a used lipid composition) in a few minutes, and during this, the encapsulated doxorubicin is released in a controllable manner. The in vitro experiments showed that the cell viability decreased to 79.2% after heat treatment alone and to 47.4% for doxorubicin-loaded magnetoliposomes without application of alternating magnetic field, while the combined treatment resulted in 17.3% cell viability. Also, in vivo results demonstrated that magnetic drug targeting has a strong antiglioma effect with a tumor volume growth inhibition and complete regression. Such targeted delivery and controlled release of anticancer agents would provide clinical advantages compared with currently available methods.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3