Author:
Žepič Vesna,Poljanšek Ida,Oven Primož,Čop Matjaž
Abstract
Abstract
Freeze dried nanofibrils were acetylated in a heterogeneous system with acetic anhydride, pyridine, and dimethylformamide and the obtained acetylated cellulose nanofibrils (CNFac) were combined with poly(lactic acid) (PLA) to a composite. CNFac with its partially hydrophobic surface showed a good compatibility with PLA resulting in composite films with improved properties. Tensile strength (TS), modulus of elasticity (MOE), and elongation at break (EB) of PLA/CNF increased significantly when 2–5% of CNFac was added to the PLA matrix, while the addition of 10% and higher amounts CNFac decreased the EB at a higher TS and MOE. Mechanical parameters did not improve in the case of unmodified CNF addition. The addition of CNFac maintained transparency and had absorbance values between those of pure PLA film and PLA film with 2% CNF, while films formed with the addition of 5 and 10% of CNF were less transparent. The addition of CNF did not essentially affect the thermal properties of nanocomposite films. The addition of 2–10% of CNFac increased the enthalpy and maximal temperature of cold crystallization as opposed to higher loading of CNFac. The results of differential scanning calorimetry (DSC) coincide with those of the mechanical properties. Tailoring properties of PLA/CNF are only reproducible in case of homogenously distributed CNF within the PLA matrix and by an improved interphase adhesion between PLA and CNFac.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献