Abstract
In order to continue the development of inks valid for cold extrusion 3D printing, waterborne, polyurethane–urea (WBPUU) based inks with cellulose nanofibers (CNF), as a rheological modulator, were prepared by two incorporation methods, ex situ and in situ, in which the CNF were added after and during the synthesis process, respectively. Moreover, in order to improve the affinity of the reinforcement with the matrix, modified CNF was also employed. In the ex situ preparation, interactions between CNFs and water prevail over interactions between CNFs and WBPUU nanoparticles, resulting in strong gel-like structures. On the other hand, in situ addition allows the proximity of WBPUU particles and CNF, favoring interactions between both components and allowing the formation of chemical bonds. The fewer amount of CNF/water interactions present in the in situ formulations translates into weaker gel-like structures, with poorer rheological behavior for inks for 3D printing. Stronger gel-like behavior translated into 3D-printed parts with higher precision. However, the direct interactions present between the cellulose and the polyurethane–urea molecules in the in situ preparations, and more so in materials reinforced with carboxylated CNF, result in stronger mechanical properties of the final 3D parts.
Subject
Polymers and Plastics,General Chemistry
Reference52 articles.
1. Mechanical properties of PLA-graphene filament for FDM 3D printing;Camargo;Int. J. Adv. Manuf. Technol.,2019
2. An overview of 3-D printing in manufacturing, aerospace, and automotive industries;Lim;IEEE Potentials,2016
3. 3D printing technology as innovative solutions for biomedical applications;Wallis;Drug Discov. Today,2020
4. Perez-Valle, A., Del Amo, C., and Andia, I. (2020). Overview of current advances in extrusion bioprinting for skin applications. Int. J. Mol. Sci., 21.
5. 3D bioprinting of tissues and organs;Murphy;Nat. Biotechnol.,2014
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献