Impact of filler type and proportion on the performance of rubberized coconut fiber-polystyrene composites

Author:

Adeniyi Adewale George1,Abdulkareem Sulyman Age1,Emenike Ebuka Chizitere2,Amoloye Mubarak A.1,Ezzat Abdelrahman O.3,Iwuozor Kingsley O.2,Al-Lohedan Hamad A.3,Oyekunle Ifeoluwa Peter4,Majiyagbe Amzat Ayomide1

Affiliation:

1. Department of Chemical Engineering, Faculty of Engineering and Technology , University of Ilorin , Ilorin , P. M. B. 1515 , Nigeria

2. Department of Pure and Industrial Chemistry , Nnamdi Azikiwe University , P. M. B. 5025 , Awka , Nigeria

3. Department of Chemistry, College of Sciences , King Saud University , Riyadh 11451 , Saudi Arabia

4. Department of Chemistry and Biochemistry , Florida State University , Tallahassee , USA

Abstract

Abstract This research investigates the production of composite materials by utilizing a polystyrene-based resin (PBR) as the matrix and a blend of coconut fiber (CF) and rubber tire (RT) as fillers. The composites were produced in varying proportions, and their mechanical and chemical properties were characterized through hardness tests, Fourier-Transform Infrared Spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) analyses. The findings highlight the notable influence of filler type and proportion on the mechanical and chemical attributes of the composites. The hardness tests demonstrated a substantial enhancement in composite hardness with the incorporation of CF and RT fillers, with CF exerting a more pronounced effect. FTIR analysis disclosed the presence of aromatic and aliphatic groups in all composites, and the introduction of CF and RT particles led to the emergence of additional peaks. EDS analysis indicated that carbon was the predominant element in all composites, followed by oxygen, while the SEM images revealed a heterogeneous microstructure for all composites, with good dispersion of CF and RT particles in the PBR matrix. The resulting composites exhibit potential applications in diverse fields such as construction, automotive, and packaging.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3