Biomimetic synthesis of two different types of renewable cellulosic nanomaterials for scaffolding in tissue engineering

Author:

Pooyan Parisa,Brewster Luke P.,Tannenbaum Rina,Garmestani Hamid

Abstract

Abstract As a rapidly growing area in materials design, the biomimetic approach at the frontier between biology and materials science aims to introduce advanced materials with structural diversities and functional versatilities by mimicking remarkable systems available in nature. Inspired by the fascinating nanostructured assembly existing in the cell walls of different plant species, we designed two fully bio-based green nanomaterials reinforced with renewable polysaccharide nanoparticles in the form of cellulose nanowhiskers (CNWs). In our initial design, the CNWs were incorporated into a cellulose acetate propionate matrix to form a bionanocomposite film, while in the second design the CNWs were entangled within a network of a collagenous medium to introduce a bionanocomposite hydrogel. Tensile and rheological measurements were carried out to study the system’s deformation as subjected to axial force or oscillatory shear. Biocompatibility was tested via incubation of human bone marrow-derived mesenchymal stem cells in vitro. Careful control of the processing conditions resulted in a three-dimensional rigid CNW network percolating within both biopolymer matrices, giving rise to an excellent performance at only a small fraction of CNWs at 3 wt.%. This study reveals that the fully bio-based green nanomaterials with enhanced mechanical percolation could construct a suitable platform for scaffolding in tissue engineering.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3