Affiliation:
1. Hahn-Meitner-Institut für Kernforschung Berlin GmbH, Bereich Strahlenchemie, Glienicker Str. 100, D-1000 Berlin 39, Bundesrepublik Deutschland
Abstract
Abstract
Polyriboadenylic acid, polyribocytidylic acid and polyribouridylic acid were irradiated with 16 MeV electrons in aqueous solution. Part of the OH radicals generated during the radiolysis of water reacted with the sugar moieties of the polynucleotides. Subsequently formed peroxyl radicals reacted with each other thus forming oxyl radicals whose's decay led to main-chain scissions with the consequence of a decrease of the light scattering intensity (LSI). In the case of single-stranded polynucleotides, the analysis of the LSI decay curves revealed the occurrence of two processes. The rapid mode was assigned to the intramolecular and the slow mode to the intermolecular reaction of peroxyl radicals. For the rate constant of the rapid process (activation energy: 5 kcal/mol) a pronounced kinetic salt effect was observed.
In the case of double-stranded polynucleotides (polyA and polyC at pH 4, poly(A+U) at pH 8) the same effects were observed as with native calf thymus DNA in a former study [9]: The LSI decreased only after a critical dose was surpassed. A rapid process was followed by a slow one. The slow process is assigned to the melting of H-bridges located at bases between main-chain scissons in the double helix. The rapid process corresponds to the separation of fragments formed by two single strand breaks laying very close to each other on opposite sites in the double helix.
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献