Affiliation:
1. Department of Cell Physiology, University of California, Berkeley
Abstract
The role of chloride in photosynthetic oxygen evolution was reinvestigated by determining the effect of this ion on photochemical reactions of chloroplasts in which oxygen either is or is not produced. The chloroplasts used were isolated from normal spinach leaves. The level of chloride in the reaction mixture was controlled by washing the isolated chloroplasts and by avoiding a chloride contamination from the water and chemicals used. Chloride was found to be essential for each of the photochemical reactions of chloroplasts in which oxygen is produced. These included (a) photoreduction of TPN, (b) photophosphorylation of the noncyclic type in which TPN or ferricyanide reduction is coupled with ATP formation and (c) photophosphorylation of the aerobic, “pseudocyclic” type in which oxygen production occurs but is masked by an equal oxygen consumption. No chloride requirement was found for the anaerobic, cyclic photophosphorylation in which oxygen is not produced. These results support the view that chloride is an essential cofactor for oxygen evolution in photosynthesis.
Cited by
94 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献