D139N mutation of PsbP enhances the oxygen-evolving activity of photosystem II through stabilized binding of a chloride ion

Author:

Imaizumi Ko1ORCID,Nishimura Taishi1,Nagao Ryo23ORCID,Saito Keisuke45ORCID,Nakano Takeshi1,Ishikita Hiroshi45ORCID,Noguchi Takumi2ORCID,Ifuku Kentaro6ORCID

Affiliation:

1. Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University , Kyoto 606-8502, Japan

2. Division of Material Science, Graduate School of Science, Nagoya University , Nagoya 464-8602, Japan

3. Research Institute for Interdisciplinary Science, Okayama University , Okayama 700-8530, Japan

4. Research Center for Advanced Science and Technology, The University of Tokyo , Tokyo 153-8904, Japan

5. Department of Applied Chemistry, The University of Tokyo , Tokyo 113-8654 , Japan

6. Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Kyoto 606-8502, Japan

Abstract

Abstract Photosystem II (PSII) is a multisubunit membrane protein complex that catalyzes light-driven oxidation of water to molecular oxygen. The chloride ion (Cl−) has long been known as an essential cofactor for oxygen evolution by PSII, and two Cl− ions (Cl-1 and Cl-2) have been found to specifically bind near the Mn4CaO5 cluster within the oxygen-evolving center (OEC). However, despite intensive studies on these Cl− ions, little is known about the function of Cl-2, the Cl− ion that is associated with the backbone nitrogens of D1-Asn338, D1-Phe339, and CP43-Glu354. In green plant PSII, the membrane extrinsic subunits—PsbP and PsbQ—are responsible for Cl− retention within the OEC. The Loop 4 region of PsbP, consisting of highly conserved residues Thr135–Gly142, is inserted close to Cl-2, but its importance has not been examined to date. Here, we investigated the importance of PsbP-Loop 4 using spinach PSII membranes reconstituted with spinach PsbP proteins harboring mutations in this region. Mutations in PsbP-Loop 4 had remarkable effects on the rate of oxygen evolution by PSII. Moreover, we found that a specific mutation, PsbP-D139N, significantly enhances the oxygen-evolving activity in the absence of PsbQ, but not significantly in its presence. The D139N mutation increased the Cl− retention ability of PsbP and induced a unique structural change in the OEC, as indicated by light-induced Fourier transform infrared (FTIR) difference spectroscopy and theoretical calculations. Our findings provide insight into the functional significance of Cl-2 in the water-oxidizing reaction of PSII.

Funder

Core Research for Evolutional Science and Technology

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3