Author:
Pezzo Leandro M. Del,Ferreira Raúl,Rossi Julio D.
Abstract
Abstract
In this paper we study the Dirichlet eigenvalue problem
$$\begin{array}{}
\displaystyle
-\Delta_p u-\Delta_{J,p}u =\lambda|u|^{p-2}u \text{ in } \Omega,\quad
u=0 \, \text{ in } \, \Omega^c=\mathbb{R}^N\setminus\Omega.
\end{array}$$
Here Ω is a bounded domain in ℝN, Δpu is the standard local p-Laplacian and ΔJ,pu is a nonlocal p-homogeneous operator of order zero.
We show that the first eigenvalue (that is isolated and simple) satisfies
$\begin{array}{}
\displaystyle
\lim_{p\to\infty}
\end{array}$(λ1)1/p = Λ where Λ can be characterized in terms of the geometry of Ω. We also find that the eigenfunctions converge, u∞ =
$\begin{array}{}
\displaystyle
\lim_{p\to\infty}
\end{array}$ up, and find the limit problem that is satisfied in the limit.
Subject
Applied Mathematics,Analysis
Reference60 articles.
1. Fractional p-eigenvalues;Riv. Math. Univ. Parma (N.S.),2014
2. A Hölder infinity Laplacian;ESAIM Control Optim. Calc. Var.,2012
3. A new proof for the equivalence of weak and viscosity solutions for the p-Laplace equation;Comm. Partial Differential Equations,2012
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献