A time-space Hausdorff derivative model for anomalous transport in porous media

Author:

Liang Yingjie12,Su Ninghu34,Chen Wen1

Affiliation:

1. Institute of Soft Matter Mechanics , College of Mechanics and Materials Hohai University , No. 8 Focheng West Road , Nanjing , 211100 , China

2. MOE Key Laboratory of Groundwater Circulation and Environmental Evolution , China University of Geosciences (Beijing) , Beijing 100083 , China

3. College of Science and Engineering , Tropical Water and Aquatic Ecosystem Research James Cook University , Cairns , Queensland 4870 , Australia

4. College of Resources and Environmental Sciences , Ningxia University , Yinchuan , Ningxia 750021 , China

Abstract

Abstract This paper presents a time-space Hausdorff derivative model for depicting solute transport in aquifers or water flow in heterogeneous porous media. In this model, the time and space Hausdorff derivatives are defined on non-Euclidean fractal metrics with power law scaling transform which, respectively, connect the temporal and spatial complexity during transport. The Hausdorff derivative model can be transformed to an advection-dispersion equation with time- and space-dependent dispersion and convection coefficients. This model is a fractal partial differential equation (PDE) defined on a fractal space and differs from the fractional PDE which is derived for non-local transport of particles on a non-fractal Euclidean space. As an example of applications of this model, an explicit solution with a constant diffusion coefficient and flow velocity subject to an instantaneous source is derived and fitted to the breakthrough curves of tritium as a tracer in porous media. These results are compared with those of a scale-dependent dispersion model and a time-scale dependent dispersion model. Overall, it is found that the fractal PDE based on the Hausdorff derivatives better captures the early arrival and heavy tail in the scaled breakthrough curves for variable transport distances. The estimated parameters in the fractal Hausrdorff model represent clear mechanisms such as linear relationships between the orders of Hausdorff derivatives and the transport distance. The mathematical formulation is applicable to both solute transport and water flow in porous media.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3