Abstract
Abstract
The vertical slice transform in spherical integral geometry takes a function on the unit sphere Sn to integrals of that function over spherical slices parallel to the last coordinate axis. This transform was investigated for n = 2 in connection with inverse problems of spherical tomography. The present article gives a survey of some methods which were originally developed for the Radon transform, hypersingular integrals, and the spherical mean Radon-like transforms, and can be adapted to obtain new inversion formulas and singular value decompositions for the vertical slice transform in the general case n ≥ 2 for a large class of functions.
Subject
Applied Mathematics,Analysis
Reference40 articles.
1. Inversion formulas for the spherical mean in odd dimensions and the Euler-Poisson-Darboux equation;Inverse Problems,2008
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献