1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. National Bureau of Standards, Washington, DC (1972)
2. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008). https://doi.org/10.1515/9781400830244
3. Agueh, M., Carlier, G.: Barycenters in the Wasserstein space. SIAM J. Math. Anal. 43(2), 904–924 (2011). https://doi.org/10.1137/100805741
4. Altekrüger, F., Hertrich, J., Steidl, G.: Neural Wasserstein gradient flows for maximum mean discrepancies with Riesz kernels. In: Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., Scarlett, J. (eds.) Proceedings of the 40th International Conference on Machine Learning, pp. 664–690. PMLR (2023). https://proceedings.mlr.press/v202/altekruger23a.html
5. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (2005). https://doi.org/10.1007/b137080