Interpreting and propagating the uncertainty of the standard atomic weights (IUPAC Technical Report)

Author:

Possolo Antonio1,van der Veen Adriaan M. H.2,Meija Juris3,Hibbert D. Brynn4

Affiliation:

1. National Institute of Standards and Technology (NIST) , Gaithersburg, MD , USA

2. Van Swinden Laboratorium (VSL) , Delft , The Netherlands

3. National Research Council Canada (NRC-CNRC) , Ottawa, ON , Canada

4. UNSW Sydney , Sydney, NSW , Australia

Abstract

Abstract In 2009, the Commission on Isotopic Abundances and Atomic Weights (CIAAW) of the International Union of Pure and Applied Chemistry (IUPAC) introduced the interval notation to express the standard atomic weights of elements whose isotopic composition varies significantly in nature. However, it has become apparent that additional guidance would be helpful on how representative values should be derived from these intervals, and on how the associated uncertainty should be characterized and propagated to cognate quantities, such as relative molecular masses. The assignment of suitable probability distributions to the atomic weight intervals is consistent with the CIAAW’s goal of emphasizing the variability of the atomic weight values in nature. These distributions, however, are not intended to reflect the natural variability of the abundances of the different isotopes in the earth’s crust or in any other environment. Rather, they convey states of knowledge about the elemental composition of “normal” materials generally, or about specific classes of such materials. In the absence of detailed knowledge about the isotopic composition of a material, or when such details may safely be ignored, the probability distribution assigned to the standard atomic weight intervals may be taken as rectangular (or, uniform). This modeling choice is a reasonable and convenient default choice when a representative value of the atomic weight, and associated uncertainty, are needed in calculations involving atomic and relative molecular masses. When information about the provenance of the material, or other information about the isotopic composition needs to be taken into account, then this distribution may be non-uniform. We present several examples of how the probability distribution of an atomic weight or relative molecular mass may be characterized, and also how it may be used to evaluate the associated uncertainty.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3