Errors-in-variables calibration with dark uncertainty

Author:

Cecelski Christina EORCID,Toman Blaza,Liu Fong-HaORCID,Meija JurisORCID,Possolo AntonioORCID

Abstract

Abstract A model for errors-in-variables regression is described that can be used to overcome the challenge posed by mutually inconsistent calibration data. The model and its implementation are illustrated in applications to the measurement of the amount fraction of oxygen in nitrogen from key comparison CCQM-K53, and of carbon isotope delta values in steroids from human urine. These two examples clearly demonstrate that inconsistencies in measurement results can be addressed similarly to how laboratory effects are often invoked to deal with mutually inconsistent results from interlaboratory studies involving scalar measurands. Bayesian versions of errors-in-variables regression, fitted via Markov Chain Monte Carlo sampling, are employed, which yield estimates of the key comparison reference function in one example, and of the analysis function in the other. The fitting procedures also characterize the uncertainty associated with these functions, while quantifying and propagating the ‘excess’ dispersion that was unrecognized in the uncertainty budgets for the individual measurements, and that therefore is missing from the reported uncertainties. We regard this ‘excess’ dispersion as an expression of dark uncertainty, which we take into account in the context of calibrations that involve regression models. In one variant of the model the estimate of dark uncertainty is the same for all the participants in the comparison, while in another variant different amounts of dark uncertainty are assigned to different participants. We compare these models with the conventional errors-in-variables model underlying the procedure that ISO 6143 recommends for building analysis functions. Applications of this procedure are often preceded by the selection of a subset of the measurement results deemed to be mutually consistent, while the more discrepant ones are set aside. This new model is more inclusive than the conventional model, in that it easily accommodates measurement results that are mutually inconsistent. It produces results that take into account contributions from all apparent sources of uncertainty, regardless of whether these sources are already understood and their contributions have been included in the reported uncertainties, or still require investigation after they will have been detected and quantified.

Funder

Partnership for Clean Competition Research Collaborative

Publisher

IOP Publishing

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3