Polynomial chaos expansion method in estimating probability distribution of rotor-shaft dynamic responses

Author:

Lasota R.,Stocki R.,Tauzowski P.,Szolc T.

Abstract

Abstract The main purpose of the study is an assessment of computational efficiency of selected numerical methods for estimation of vibrational response statistics of a large multi-bearing turbo-generator rotor-shaft system. The effective estimation of the probability distribution of structural responses is essential for robust design optimization and reliability analysis of such systems. The analyzed scatter of responses is caused by random residual unbalances as well as random stiffness and damping parameters of the journal bearings. A proper representation of these uncertain parameters leads to multidimensional stochastic models. Three estimation techniques are compared: Monte Carlo sampling, Latin hypercube sampling and the sparse polynomial chaos expansion method. Based on the estimated values of the first four statistical moments the probability density function of the maximal vibration amplitude is evaluated by the maximal entropy principle method. The method is inherently suited for an accurate representation of the probability density functions with an exponential behavior, which appears to be characteristic for the investigated rotor-shaft responses. Performing multiple numerical tests for a range of sample sizes it was found that the sparse polynomial chaos method provides the best balance between the accuracy and computational effectiveness in estimating the unknown probability distribution of the maximal vibration amplitude

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Networks and Communications,General Engineering,Information Systems,Atomic and Molecular Physics, and Optics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3