Research on uncertainties in fuel centrifugal pump based on prediction and reconstruction of internal flow field

Author:

Liu XianweiORCID,Zhong ShijieORCID,Zheng XueboORCID,Fu JiangfengORCID

Abstract

Geometric machining errors in the blade profile and variable operating conditions in the extreme operating environment are primary factors leading to the uncertainties in pump performance. This paper presents an analysis of uncertainties of fuel centrifugal pumps by modeling the geometry uncertainty in blade machining based on the Karhunen–Loève (KL) expansion and using a polynomial chaos expansion (PCE) model. First, the geometric uncertainty in the blade machining is described by the KL expansion in three sections and a stochastic simulation of the blade geometry is performed. Then, a PCE surrogate model is trained based on the least angle regression method and validated by the bootstrap method to quantify the uncertainties of performance indices. Finally, the influence mechanism and relative importance of each input uncertainty parameter are investigated using a quasi-Monte Carlo simulation method. The results show that the KL expansion of the blade profile uses the random vector perturbation superposition of three stream surface, achieving the dimensional reduction in the blade machining error. The PCE surrogate model, trained with a dataset of 3 × 106 sample points, exhibits excellent fit, and the R-squared and adjusted R-squared for head coefficient and efficiency are both above 80%. The variance of parameter control points of the reconstructed flow field is less than 0.002. The uncertainties in both operating conditions and parameters have an influence on the distribution of the global flow field, while the influence of the uncertainty in machining error on the global flow field mainly concentrates on the power-generating positions of the blade.

Funder

National Science and Technology Major Project

Aviation Engine and Gas Turbine Basic Science Center Project

Defense Industrial Technology Development Program

AECC Industry University Cooperation Project

National Natural Science Foundation of China

Key R&D Plan Porject of Shaanxi Province

Publisher

AIP Publishing

Reference35 articles.

1. Research and development of afterburner control system for military aeroengine;Aeroengine,2001

2. A review of aeroengine control system;J. Aerosp. Power,2004

3. Experimental performance evaluation of a centrifugal pump with different impeller vane geometries,2014

4. Development of ultra-low specific speed centrifugal pumps design method for small liquid rocket engines;Aerospace,2022

5. Numerical study of a fuel centrifugal pump with variable impeller width for aero-engines;Int. J. Turbo Jet-Engines,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3