Author:
Walenczykowska M.,Kawalec A.
Abstract
Abstract
Automatic recognition of the signal modulation type turned out to be useful in many areas, including electronic warfare or surveillance. The wavelet transform is an effective way to extract signal features for identification purposes. In this paper there are M-ary ASK, M-ary PSK, M-ary FSK, M-ary QAM, OOK and MSK signals analysed. The mean value, variance and central moments up to five of continuous wavelet transform (CWT) are used as signal features. The principal component analysis (PCA) is applied to reduce a number of features. A multi-layer neural network trained with backpropagation learning algorithm is considered as a classifier. There are two research variants: interclass and intraclass recognition with a wide range of signal-to-noise ratio (SNR).
Subject
Artificial Intelligence,Computer Networks and Communications,General Engineering,Information Systems,Atomic and Molecular Physics, and Optics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献