Application of Continuous Wavelet Transform and Artificial Naural Network for Automatic Radar Signal Recognition

Author:

Walenczykowska MartaORCID,Kawalec AdamORCID

Abstract

This article aims to propose an algorithm for the automatic recognition of selected radar signals. The algorithm can find application in areas such as Electronic Warfare (EW), where automatic recognition of the type of intra-pulse modulation or the type of emitter operation mode can aid the decision-making process. The simulations carried out included the analysis of the classification possibilities of linear frequency modulated pulsed waveform (LFMPW), stepped frequency modulated pulsed waveform (SFMPW), phase coded pulsed waveform (PCPW), rectangular pulsed waveforms (RPW), frequency modulated continuous wave (FMCW), continuous wave (CW), Stepped Frequency Continuous Wave SFCW) and Phase Coded Continuous Waveform (PCCW). The algorithm proposed in this paper is based on the use of continuous wavelet transform (CWT) coefficients and higher-order statistics (HOS) in the feature determination of selected signals. The Principal Component Analysis (PCA) method was used for dimensionality reduction. An artificial neural network was then used as a classifier. Simulation studies took into account the presence of noise interference with signal-to-noise ratio (SNR) in the range from −5 to 10 dB. Finally, the obtained classification efficiency is presented in the form of a confusion matrix. The simulation results show a high recognition test accuracy, above 99% with a signal-to-noise ratio greater than 0 dB. The article also deals with the selection of the type and parameters of the wavelet. The authors also point to the problems encountered during the research and examples of how to solve them.

Funder

Military University of Technology in Warsaw

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3