Weight reduction of a carbon fibre composite wheel

Author:

Czypionka Stefan1,Kienhöfer Frank1

Affiliation:

1. University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, South Africa

Abstract

AbstractThe wheel of a passenger vehicle must be designed to be safe and light. Despite the tremendous potential of carbon fibre as an automotive material due to high strength and low weight, the prevalence of carbon fibre reinforced plastics (CFRPs) in vehicle wheels is limited. Manufacturing and testing CFRP prototypes is expensive. Thus it is advantageous to develop simulation models for composite weight reduction. The simulation models can provide insight into how lighter CFRP wheels can be designed. This study presents the design development of a CFRP wheel for a high-performance roadster; the CFRP wheel is offered by an automotive manufacturer as a high-performance option instead of aluminium wheels. Finite element (FE) simulations were initially conducted assuming an isotropic material. This initial model was used to eliminate stress concentrations and to design and manufacture an initial CFRP wheel. The CFRP wheel weight is 6.8 kg as compared to the original aluminium wheel which weighs 8.1 kg. This initial design passed the dynamic cornering fatigue test (the most stringent strength test for wheels). Thereafter the wheel was instrumented with strain gauges and a bending moment was applied to the hub using a custom-built test rig. The test rig produced a static load equivalent to the dynamic cornering fatigue test (in which the applied bending moment varies sinusoidally). The test rig allowed for the deflection of the load arm to be measured. The comparison of the experimentally measured strains and an FE model which includes the CFRP laminate properties showed good agreement. Two alternative laminate options were simulated using the FE model. These showed both an increase in stiffness and a calculated weight reduction. This study shows that an aluminium wheel for a high-performance roadster can be redesigned using CFRP to be 16% lighter and using a FE model a further 152 g weight reduction is possible (18% weight reduction in total when compared to the aluminium wheel).

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

Reference36 articles.

1. “The Science and Methodology of SAE Wheel Fatigue Test Specifications,”;SAE Tech. Pap. Ser,2005

2. “Structural Automotive Components in Fibre Reinforced Plastics,”,1985

3. “Simulation of dynamic cornering fatigue test of a steel passenger car wheel,”;Int. J. Fatigue,2010

4. “Modeling the mechanical response of an aluminum alloy automotive rim,”;Mater. Sci. Eng. A,2004

5. “Improvement In The Wheel Design Using Realistic Loading Conditions – FEA and Experimental Stress Comparison,”;SAE Int,2011

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3