Affiliation:
1. College of Vehicle and Traffic Engineering, Henan University of Science and Technology, Luoyang, China
2. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China
Abstract
In order to study the fatigue performance of wheel and enhance its lightweight design level, this article proposes the structure, design and optimization method of magnesium-aluminum alloy assembled wheel. Taking a [Formula: see text] type wheel as the research object, the optimal topology of wheel spoke is solved by constructing a topology optimization model for wheel bending and radial fatigue test conditions. A finite element model for bending and radial fatigue testing of assembled wheels was established, which simulates and analyzes the fatigue performance and its influencing factors of the wheel under two working conditions. Combined with contribution analysis method, the modified NSGA-II and entropy weight grey relation analysis (EGRA), the multi-objective optimization of assembled wheel was performed. The result demonstrated that the weight reduction of the assembled wheel after optimized design is 4.49%, while the bending fatigue life and radial fatigue safety factor are decreased by 9.95% and 25%, respectively. In order to better balance the performance of assembled wheel and achieve lightweight design, this article combines the joint topology optimization of assembled wheels with multi-objective optimization method for multiple working conditions and screens the optimal compromise solution by EGRA, which provides an approach for wheel lightweight design and multi-objective optimization.
Funder
National Key Research and Development Program of China
Science and Technology Research Project of Henan Province
Key Scientific Research Project of Colleges and Universities in Henan Province
the Major Science and Technology Project of Henan Province
Key R&D and Promotion Project of Henan Province
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献