Chemical synthesis and densification of a novel Ag/Cr2O3-AgCrO2 nanocomposite powder

Author:

Ardestani Mohammad,Karpasand Farshid

Abstract

Abstract Ag/Cr2O3-AgCrO2 nanocomposite powders were chemically synthesized using a chemical precipitation method. The synthesis method stages included precipitation and calcination. The initial precipitates contained Cr(OH)3·3H2O and Ag2CO3 compounds. Calcination of the initial precipitates led to thermal decomposition of the precipitates and evaporation of volatile compounds such as H2O and CO2. The calcined precipitates contained silver, chromium oxide, and silver-chromia. The crystallite size of Ag2CO3 and Ag were determined as 18.9 and 45 nm, respectively. The scanning electron microscopy investigations showed that the particle size of the initial precipitates was lower than 100 nm. The calcined powders were sintered at 550°C in air atmosphere. The sintered samples were cold-repressed under 300 and 550 MPa. It was found that by increasing the repressing compaction magnitudes, the density and hardness of the sintered samples were increased. The scanning electron microscopy evaluation of the densified samples showed nearly dense microstructure.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3