Effects of multiwalled carbon nanotube mass fraction on microstructures and electrical resistivity of polycarbonate-based conductive composites

Author:

Wang Lijun1,Qiu Jianhui1,Sakai Eiichi1,Wei Xiaowei2

Affiliation:

1. 1Faculty of System Science and Technology, Department of Machine Intelligence and Systems Engineering, Akita Prefectural University, 84-4 Tsuchiya Ebinokuchi, Yurihonjo, Akita 015-0055, Japan

2. 2Department of Material Science and Engineering, Xihua University, Tuqiao Jinzhou Road 999, Chengdu, Sichuan 610039, China

Abstract

AbstractFour polycarbonate (PC)-based composites with 1, 2.5, 5, and 10 wt.% raw multiwalled carbon nanotubes (MWCNTs) were prepared using extrusion process followed by injection molding. The effects of MWCNT mass fraction (W) on composite mechanical, thermal, and electrical properties were examined. The mechanical properties suggested that the tensile strength of the composites with 2.5 wt.% raw MWCNTs exhibited an increase of ~5 MPa (~8.6%) at a particular injection condition. Besides, thermogravimetric analysis (TGA) indicated that the addition of 1 wt.% MWCNTs improved the thermal stability of PC by approximately 100°C. Aside from mechanical and thermal properties, the electrical resistivity of the 5 wt.% raw MWCNT composites was considerably decreased to 102 Ω/sq, a value approximately 15 orders of magnitude lower than that of PC. Furthermore, the effects of injection conditions on composite electrical properties were emphatically discussed, and it was found that electrical resistivity was sensitive to injection temperature and speed. Low electrical resistivity was achieved at high injection temperature and low injection speed. Scanning electron microscopy images revealed that electrical resistivity relied on the microstructure of the prepared MWCNT/PC composites.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3