Mechanical and electrical properties of polylactic acid/carbon nanotube composites by rolling process

Author:

Wang Lijun1,Qiu Jianhui2,Sakai Eiichi2

Affiliation:

1. Department of Mechanical and Biofunctional Systems, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

2. Department of Machine Intelligence and Systems Engineering, Faculty of System Science and Technology, Akita Prefectural University, 84-4 Tsuchiya Ebinokuchi, Yurihonjo, Akita 015-0055, Japan

Abstract

AbstractIn this work, the rolling process was employed to fabricate polylactic acid/multi-walled carbon nanotube (PLA/MWCNT) composites at room temperature. The effects of the rolling conditions on the mechanical and electrical properties of the fabricated composites were investigated. The evolution processes of the internal molecular structures, i.e. changes in molecular orientation and crystallinity, were examined by X-ray diffraction, differential scanning calorimetry, and density method. The results suggested that the molecular orientation improved; however, the crystallinity decreased when the rolling ratio increased. The analysis of the mechanical properties revealed that the rolled composites displayed anisotropy during the rolling process. In the rolling direction, after adding 1 wt.% MWCNTs, the tensile strength increased from 58.6 to 94.3 MPa with the rolling ratio, whereas the fracture strain sharply increased to 131.5% at the rolling ratio of 60%. In addition to the mechanical properties, electrical resistivity was also investigated; notably, this property was not significantly affected by the rolling process. Furthermore, the MWCNT dispersion and morphology were investigated by scanning electron microscopy. These findings offer a simple and effective method to fabricate conductive composites with excellent mechanical properties.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3