Natural variation in stress response induced by low CO2 in Arabidopsis thaliana

Author:

Wu Chunxia1,Sun Yulou1,Yang Guang1,Li Li1,Sun Wei1,Wang Zenglan1,Zhang Hui1,Li Yuanyuan2

Affiliation:

1. Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, 250014, Shandong, People’s Republic of China

2. Key Laboratory of Systems Biology, College of Life Science, Shandong Normal University, Ji’nan, 250014, Shandong, People’s Republic of China

Abstract

AbstractVariation in atmospheric carbon dioxide (CO2) concentration can dictate plant growth and development and shape plant evolution. For paired populations of 31 Arabidopsis accessions, respectively, grown under 100 or 380 ppm CO2, we compared phenotypic traits related to vegetative growth and flowering time. Four accessions showed the least variation in measured growth traits between 100 ppm CO2 and 380 ppm CO2 conditions, though all accessions exhibited a dwarf stature with reduced biomass under low CO2. Our comparison of accessions also incorporated the altitude (indicated in meters) above sea level at which they were originally collected. Notably, An-1 (50 m), Est (50 m), Ws-0 (150 m), and Ler-0 (600 m) showed the least differences (lower decrease or increase) between treatments in flowering time, rosette leaf number, specific leaf weight, stomatal density, and less negative δ13C values. When variations for all traits and seedset were considered together, Ws-0 exhibited the least change between treatments. Our results showed that physiological and phenotypic responses to low CO2 varied among these accessions and did not correlate linearly with altitude, thus suggesting that slower growth or smaller stature under ambient CO2 may potentially belie a fitness advantage for sustainable growth under low CO2 availability.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3