Changes in the fecal microbiome of the Yangtze finless porpoise during a short-term therapeutic treatment

Author:

You Lei1,Ying Congping2,Liu Kai2,Zhang Xizhao2,Lin Danqing2,Yin Denghua2,Zhang Jialu2,Xu Pao2

Affiliation:

1. Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China

2. Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, CAFS, Binhu District, Wuxi, Jiangsu, China

Abstract

AbstractThe fecal microbiome is an integral part of aquatic mammals, like an inner organ. But we know very little about this inner organ of the threatened aquatic species, Yangtze finless porpoise (YFP). Four YFPs were placed into a purse seine for skin ulceration treatment, and this opportunity was taken to nurse the animals closer. In particular, we collected the feces of the YFPs before and after the paired healing and therapeutic treatment, along with samples of their fish diet and water habitat, to explore the changes in their fecal microbiome. Firmicutes (20.9–96.1%), Proteobacteria (3.8–78.7%), Actinobacteria (0.1–35.0%) and Tenericutes (0.8–17.1%) were the most dominant phyla present in the feces. The proportion of Proteobacteria and Actinobacteria increased after the treatment. Firmicutes showed a significant decrease, and most potential pathogens were absent, which reflected the administration of ciprofloxacin hydrochloride. Moreover, environmental shifts can also contribute to changes in the fecal microbiome. These results indicate that certain microbial interactions can be affected by environmental shifts, dietary changes and health-care treatments, which can also help maintain the internal environment of YFPs. These findings will inform the future enhanced protection and management of endangered YFPs and other vulnerable aquatic animals.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Reference114 articles.

1. Environmental sources of bacteria differentially influence host-associated microbial dynamics;mSystems,2018

2. Novel ecological niche of Cetobacterium somerae, an anaerobic bacterium in the intestinal tracts of freshwater fish;Lett Appl Microbiol,2010

3. Gut microbiome and antibiotics;Arch Med Res,2017

4. Seawater transfer alters the intestinal microbiota profiles of Atlantic salmon (Salmo salar L.);Sci Rep,2017

5. Age-related differences revealed in Australian fur seal Arctocephalus pusillus doriferus gut microbiota;J Fems Microbiol Ecol,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3