Insights on Gut and Skin Wound Microbiome in Stranded Indo-Pacific Finless Porpoise (Neophocaena phocaenoides)

Author:

Li ChengzhangORCID,Xie Huiying,Sun Yajing,Zeng Ying,Tian Ziyao,Chen XiaohanORCID,Sanganyado EdmondORCID,Lin JianqingORCID,Yang Liangliang,Li Ping,Liang BoORCID,Liu Wenhua

Abstract

The gut microbiome is a unique marker for cetaceans’ health status, and the microbiome composition of their skin wounds can indicate a potential infection from their habitat. Our study provides the first comparative analysis of the microbial communities from gut regions and skin wounds of an individual Indo-Pacific finless porpoise (Neophocaena phocaenoides). Microbial richness increased from the foregut to the hindgut with variation in the composition of microbes. Fusobacteria (67.51% ± 5.10%), Firmicutes (22.00% ± 2.60%), and Proteobacteria (10.47% ± 5.49%) were the dominant phyla in the gastrointestinal tract, while Proteobacteria (76.11% ± 0.54%), Firmicutes (22.00% ± 2.60%), and Bacteroidetes (10.13% ± 0.49%) were the dominant phyla in the skin wounds. The genera Photobacterium, Actinobacillus, Vibrio, Erysipelothrix, Tenacibaculum, and Psychrobacter, considered potential pathogens for mammals, were identified in the gut and skin wounds of the stranded Indo-Pacific finless porpoise. A comparison of the gut microbiome in the Indo-Pacific finless porpoise and other cetaceans revealed a possible species-specific gut microbiome in the Indo-Pacific finless porpoise. There was a significant difference between the skin wound microbiomes in terrestrial and marine mammals, probably due to habitat-specific differences. Our results show potential species specificity in the microbiome structure and a potential threat posed by environmental pathogens to cetaceans.

Funder

National Natural Science Foundation of China

Key Program of Marine Economy Development (Six Marine Industries) Special Foundation of Department of Natural Resources of Guangdong Province

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3