miR-378a-3p regulates glioma cell chemosensitivity to cisplatin through IGF1R

Author:

Wang Yunjiang1,Du Jia2

Affiliation:

1. Department of Neurosurgery, Yancheng Third People’s Hospital , Yancheng City , Jiangsu Province, 224001 , China

2. Cancer Center, Daping Hospital, Army Medical University , No. 10 Changjiang Zhilu, Daping Yuzhong District , Chongqing , 400042 , China

Abstract

Abstract Glioma is a type of common intracranial tumor. In this study, we investigated the molecular mechanism by which miR-378a-3p regulates cisplatin (CDDP) chemosensitivity in glioma cells via insulin-like growth factor 1 receptor (IGF1R). U251/CDDP cells were treated with CDDP and transfected with miR-378a-3p mimics, NC mimics, or pcDNA-IGF1R. qRT-PCR was used to measure the differential level of miR-378a-3p. CCK-8 assay was used to test cell proliferation, and flow cytometry was used to analyze apoptosis. The targeting relationship between miR-378a-3p and IGF1R was tested through a dual-luciferase reporter gene assay. In contrast to normal glial cells, the miR-378a-3p level decreased in human glioma U251 cells and had lower expression in U251/CDDP cells. Compared with the CDDP group, miR-378a-3p significantly caused the inhibition of U251/CDDP cell proliferation and enhanced apoptosis in the miR-378a-3p mimics + CDDP group. Another experiment confirmed that IGF1R was a target gene of miR-378a-3p, and overexpression of miR-378a-3p inhibited IGF1R expression. In addition, co-overexpression of miR-378a-3p and IGF1R induced the upregulation of the U251/CDDP cell proliferation and the inhibition of apoptosis in the miR-378a-3p mimics + pcDNA-IGF1R + CDDP group. This study confirmed that miR-378a-3p promoted the sensitivity of glioma cells to CDDP in glioma patients via targeting IGF1R to increase the therapeutic effect during chemotherapy.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3