Association between circHIPK3/miR-378a-3p/HDAC4 axis and osteoporotic fractures: A comprehensive investigation

Author:

Wang Lei1,Sheng Zhen2,Yao Tao2ORCID

Affiliation:

1. Department of Pre-Hospital and Emergency, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Hefei, China

2. Department of Orthopaedics, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Hefei, China

Abstract

Background Osteoporotic fractures (OFs) are a significant public health issue, which can lead to pain and impaired mobility. The underlying mechanisms of OFs remain unclear, but recent studies have suggested that the circRNA-miRNA-mRNA pathway may play a crucial role. Purpose This study aimed to investigate the potential involvement of the circHIPK3/miR-378a-3p/HDAC4 pathway in the pathogenesis of OFs. Methods We collected tissue and serum samples from 10 patients with OFs and 10 healthy controls. The expression levels of circHIPK3, miR-378a-3p, and HDAC4 were measured by qPCR and WB. Additionally, we quantified the serum levels of bone metabolism-related indicators (ALP, OC, TRAP, OCIF, ODF) using ELISA. Results Our results revealed significant upregulation of circHIPK3 and HDAC4 in both tissue and serum samples from OF patients compared with controls. Simultaneously, we detected a lower expression level of miR-378a-3p in OF tissues and serum than that in the control group. Furthermore, the serum levels of bone metabolism-related indicators ALP, TRAP, OCIF, and ODF were significantly higher in OF patients than in the control group. Interestingly, the serum level of OCIF was lower in OF patients than in the control group. Conclusion Our study provides important evidence for the involvement of the circHIPK3/miR-378a-3p/HDAC4 pathway in the pathogenesis of OFs. The upregulation of circHIPK3 and HDAC4 and downregulation of miR-378a-3p observed in OF patients suggests their potential regulatory effects on bone metabolism. Meanwhile, abnormal expression of serum bone metabolism-related indicators may contribute to the development of OFs by disrupting the balance of bone remodeling.

Funder

the Applied Medical Research Project of Hefei Municipal Health Commission

Publisher

SAGE Publications

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3