Relaxed many-body optimal transport and related asymptotics

Author:

Bindini Ugo1,Bouchitté Guy2ORCID

Affiliation:

1. Scuola Normale Superiore , Piazza dei Cavalieri 7, 56126 Pisa , Italy

2. Imath , Université de Toulon , BP 20132, 83957 La Garde Cedex , France

Abstract

Abstract Optimization problems on probability measures in d {\mathbb{R}^{d}} are considered where the cost functional involves multi-marginal optimal transport. In a model of N interacting particles, for example in Density Functional Theory, the interaction cost is repulsive and described by a two-point function c ( x , y ) = ( | x - y | ) {c(x,y)=\ell(\lvert x-y\rvert)} where : + [ 0 , ] {\ell:\mathbb{R}_{+}\to[0,\infty]} is decreasing to zero at infinity. Due to a possible loss of mass at infinity, non-existence may occur and relaxing the initial problem over sub-probabilities becomes necessary. In this paper, we characterize the relaxed functional generalizing the results of [4] and present a duality method which allows to compute the Γ-limit as N {N\to\infty} under very general assumptions on the cost ( r ) {\ell(r)} . We show that this limit coincides with the convex hull of the so-called direct energy. Then we study the limit optimization problem when a continuous external potential is applied. Conditions are given with explicit examples under which minimizers are probabilities or have a mass < 1 {<1} . In a last part, we study the case of a small range interaction N ( r ) = ( r / ε ) {\ell_{N}(r)=\ell(r/\varepsilon)} ( ε 1 {\varepsilon\ll 1} ) and we show how the duality approach can also be used to determine the limit energy as ε 0 {\varepsilon\to 0} of a very large number N ε {N_{\varepsilon}} of particles.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference27 articles.

1. H. Attouch, Variational Convergence for Functions and Operators, Appl. Math. Ser., Pitman, Boston, 1984.

2. D. Azé, Convergence des variables duales dans des problèmes de transmission à travers des couches minces par des méthodes d’épi-convergence, Ric. Mat. 35 (1986), no. 1, 125–159.

3. G. Bouchitté, Convex Analysis and Duality, Encyclopedia Math. Phys., Academic Press, New York, 2006.

4. G. Bouchitté, G. Buttazzo, T. Champion and L. De Pascale, Relaxed multi-marginal costs and quantization effects, Ann. Inst. H. Poincaré C Anal. Non Linéaire 38 (2021), no. 1, 61–90.

5. A. Braides, Γ-Convergence for Beginners, Oxford Lecture Ser. Math. Appl. 22, Oxford University, Oxford, 2002.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3