A hybrid random forest to predict soccer matches in international tournaments

Author:

Groll Andreas1,Ley Cristophe2,Schauberger Gunther3,Van Eetvelde Hans2

Affiliation:

1. TU Dortmund University, Faculty Statistics , Vogelpothsweg 87 , 44227 Dortmund , Germany

2. Ghent University , Department of Applied Mathematics, Computer Science and Statistics , Krijgslaan 281, S9, Campus Sterre , Ghent 9000 , Belgium

3. Technische Universitaet Muenchen , Department of Sport and Health Sciences , Munich, Bavaria , Germany

Abstract

Abstract In this work, we propose a new hybrid modeling approach for the scores of international soccer matches which combines random forests with Poisson ranking methods. While the random forest is based on the competing teams’ covariate information, the latter method estimates ability parameters on historical match data that adequately reflect the current strength of the teams. We compare the new hybrid random forest model to its separate building blocks as well as to conventional Poisson regression models with regard to their predictive performance on all matches from the four FIFA World Cups 2002–2014. It turns out that by combining the random forest with the team ability parameters from the ranking methods as an additional covariate the predictive power can be improved substantially. Finally, the hybrid random forest is used (in advance of the tournament) to predict the FIFA World Cup 2018. To complete our analysis on the previous World Cup data, the corresponding 64 matches serve as an independent validation data set and we are able to confirm the compelling predictive potential of the hybrid random forest which clearly outperforms all other methods including the betting odds.

Publisher

Walter de Gruyter GmbH

Subject

Decision Sciences (miscellaneous),Social Sciences (miscellaneous)

Reference32 articles.

1. Bischl, B., M. Lang, L. Kotthoff, J. Schiffner, J. Richter, E. Studerus, G. Casalicchio, and Z. M. Jones. 2016. “mlr: Machine Learning in R.” Journal of Machine Learning Research 17:1–5. http://jmlr.org/papers/v17/15-066.html.

2. Boshnakov, G., T. Kharrat, and I. G. McHale. 2017. “A Bivariate Weibull Count Model for Forecasting Association Football Scores.” International Journal of Forecasting 33:458–466. http://www.sciencedirect.com/science/article/pii/S0169207017300018.

3. Breiman, L. 2001. “Random Forests.” Machine Learning 45:5–32.

4. Breiman, L., J. H. Friedman, R. A. Olshen, and J. C. Stone. 1984. Classification and Regression Trees. Monterey, CA: Wadsworth.

5. Dixon, M. J. and S. G. Coles. 1997. “Modelling Association Football Scores and Inefficiencies in the Football Betting Market.” Journal of the Royal Statistical Society: Series C (Applied Statistics) 46:265–280.

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3