Using sequential statistical tests for efficient hyperparameter tuning

Author:

Buczak PhilipORCID,Groll Andreas,Pauly Markus,Rehof Jakob,Horn Daniel

Abstract

AbstractHyperparameter tuning is one of the most time-consuming parts in machine learning. Despite the existence of modern optimization algorithms that minimize the number of evaluations needed, evaluations of a single setting may still be expensive. Usually a resampling technique is used, where the machine learning method has to be fitted a fixed number of k times on different training datasets. The respective mean performance of the k fits is then used as performance estimator. Many hyperparameter settings could be discarded after less than k resampling iterations if they are clearly inferior to high-performing settings. However, resampling is often performed until the very end, wasting a lot of computational effort. To this end, we propose the sequential random search (SQRS) which extends the regular random search algorithm by a sequential testing procedure aimed at detecting and eliminating inferior parameter configurations early. We compared our SQRS with regular random search using multiple publicly available regression and classification datasets. Our simulation study showed that the SQRS is able to find similarly well-performing parameter settings while requiring noticeably fewer evaluations. Our results underscore the potential for integrating sequential tests into hyperparameter tuning.

Funder

Technische Universität Dortmund

Publisher

Springer Science and Business Media LLC

Reference42 articles.

1. Adewumi, A.O., Akinyelu, A.A.: A survey of machine-learning and nature-inspired based credit card fraud detection techniques. Int. J. Syst. Assur. Eng. Manag. 8(2), 937–953 (2017)

2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

3. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K.Q. (eds.) Proceedings of the 24th International Conference on Neural Information Processing Systems. NIPS’11, pp. 2546–2554, Granada (2011)

4. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation. GECCO’02, pp. 11–18, New York (2002)

5. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.) F-Race and Iterated F-Race: An Overview, pp. 311–336. Springer, Berlin (2010)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial special issue: Bridging the gap between AI and Statistics;AStA Advances in Statistical Analysis;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3