Affiliation:
1. 1Institut Européen des Membranes, UMR 5635 ENSCM UM CNRS, Université Montpellier, Place Eugene Bataillon, F-34095 Montpellier cedex 5, France
Abstract
AbstractThe most fundamental phenomena in the immobilising of biomolecules on the nanostructured materials for energy, environmental and health applications are the control of interfaces between the nanostructures/nanopores and the immobilized biomaterials. Thus, the throughput of all those biobased nanostructured materials and devices can be improved or controlled by the enhanced geometric area of the nanostructured interfaces if an efficient immobilization of the biomolecules is warranted. In this respect, an accurate control of the geometry (size, porosity, etc.) and interfaces is primordial to finding the delicate balance between large/control interface areas and good immobilization conditions. Here, we will show how the atomic layer deposition (ALD) can be used as a tool for the creation of controlled nanostructured interfaces in which the geometry can be tuned accurately and the dependence of the physical-chemical properties on the geometric parameters can be studied systematically in order to immobilize biomolecules. We will show mainly examples of how these methods can be used to create single nanopores for mass spectroscopy and DNA sequencing, and membrane for gas separation and water treatment in which the performance varies with the nanostructure morphologies/interfaces and the immobilization conditions.
Subject
General Chemical Engineering,General Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献