Design and Analysis of Experiments in Networks: Reducing Bias from Interference

Author:

Eckles Dean1ORCID,Karrer Brian2,Ugander Johan3

Affiliation:

1. Massachusetts Institute of Technology , Sloan School of Management , Cambridge , MA, USA

2. Facebook , Menlo Park , CA, USA

3. Department of Management Science & Engineering , Stanford University , Stanford , CA, USA

Abstract

Abstract Estimating the effects of interventions in networks is complicated due to interference, such that the outcomes for one experimental unit may depend on the treatment assignments of other units. Familiar statistical formalism, experimental designs, and analysis methods assume the absence of this interference, and result in biased estimates of causal effects when it exists. While some assumptions can lead to unbiased estimates, these assumptions are generally unrealistic in the context of a network and often amount to assuming away the interference. In this work, we evaluate methods for designing and analyzing randomized experiments under minimal, realistic assumptions compatible with broad interference, where the aim is to reduce bias and possibly overall error in estimates of average effects of a global treatment. In design, we consider the ability to perform random assignment to treatments that is correlated in the network, such as through graph cluster randomization. In analysis, we consider incorporating information about the treatment assignment of network neighbors. We prove sufficient conditions for bias reduction through both design and analysis in the presence of potentially global interference; these conditions also give lower bounds on treatment effects. Through simulations of the entire process of experimentation in networks, we measure the performance of these methods under varied network structure and varied social behaviors, finding substantial bias reductions and, despite a bias–variance tradeoff, error reductions. These improvements are largest for networks with more clustering and data generating processes with both stronger direct effects of the treatment and stronger interactions between units.

Publisher

Walter de Gruyter GmbH

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3