Author:
Thomas Juliana Christina,Burich Martha Daniela,Bandeira Pamela Taisline,Marques de Oliveira Alfredo Ricardo,Piovan Leandro
Abstract
AbstractEnzymatic kinetic resolution reactions are a well-established way to achieve optically active compounds. When enzymatic reactions are combined to continuous-flow methodologies, other benefits are added, including reproducibility, optimized energy use, minimized waste generation, among others. In this context, we herein report a case study involving lipase-mediated transesterification by acylation and deacylation reactions of secondary alcohols/esters in batch and continuous-flow modes. Acylation reactions were performed with high values of enantiomeric excess (72 up to >99%) and enantioselectivity (E > 200) for both batch and continuous-flow modes. On the other hand, for deacylation reactions using n-butanol as nucleophile, enatiomeric excess ranged between 38 to >99% and E from 6 to >200 were observed for batch mode. For deacylation reactions in continuous-flow mode, results were disappointing, as in some cases, very low or no conversion was observed. Enantiomeric excess ranged from 16 to >99% and enantioselectivity from 5 to >200 were observed. In terms of productivity, continuous-flow mode reactions were superior in both strategies (acylation: r from 1.1 up to 18.1-fold higher, deacylation: 2.8 up to 7.4- fold higher in continuous-flow than in batch mode).
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献