Diagenesis and its influence on reservoir quality and oil-water relative permeability: A case study in the Yanchang Formation Chang 8 tight sandstone oil reservoir, Ordos Basin, China

Author:

Wang Meng,Yang Zhaomeng,Shui Changjun,Yu Zhong,Wang Zhufeng,Cheng Yulin

Abstract

Abstract Different from conventional reservoirs, unconventional tight sand oil reservoirs are characterized by low or ultra-low porosity and permeability, small pore-throat size, complex pore structure and strong heterogeneity. For the continuous exploration and enhancement of oil recovery from tight oil, further analysis of the origins of the different reservoir qualities is required. The Upper Triassic Chang 8 sandstone of the Yanchang Formation from the Maling Oilfield is one of the major tight oil bearing reservoirs in the Ordos Basin. Practical exploration demonstrates that this formation is a typical tight sandstone reservoir. Samples taken from the oil layer were divided into 6 diagenetic facies based on porosity, permeability and the diagenesis characteristics identified through thin section and scanning electron microscopy. To compare pore structure and their seepage property, a high pressure mercury intrusion experiments (HPMI), nuclear magnetic resonance (NMR), andwater-oil relative permeability test were performed on the three main facies developed in reservoir. The reservoir quality and seepage property are largely controlled by diagenesis. Intense compaction leads to a dominant loss of porosity in all sandstones, while different degrees of intensity of carbonate cementation and dissolution promote the differentiation of reservoir quality. The complex pore structure formed after diagenesis determines the seepage characteristics, while cementation of chlorite and illite reduce the effective pore radius, limit fluid mobility, and lead to a serious reduction of reservoir permeability.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Reference92 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3