Densification Mechanisms and Pore Evolution Analysis of a Tight Reservoir: A Case Study of Shan-1 Member of Upper Paleozoic Shanxi Formation in SW Ordos Basin, China

Author:

Xiao Ling12ORCID,Yang Leilei12,Zhang Xuwen3,Guan Xijuan3,Wei Qinlian12ORCID

Affiliation:

1. School of Earth Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China

2. Shaanxi Key Laboratory of Petroleum Accumulation Geology, Xi’an Shiyou University, Xi’an 710065, China

3. No. 2 Oil Production Plant, PetroChina Changqing Oilfield Company, Qingyang 735100, China

Abstract

This comprehensive analysis investigated the causes of formation densification in the Shan-1 Member tight reservoir in the southwestern Ordos Basin. The study aimed to mitigate exploration and development risks by examining petrological characteristics, reservoir performance, pore characteristics, and pore evolution. Various techniques were employed, including thin-section casting, scanning electron microscopy, and analysis of porosity and permeability. By establishing the relationship between visualized reservoir porosity and thin slice porosity, along with employing mechanical compaction correction methods and the principle of “back stripping by inversion,” the recovery of paleophysical properties in tight sandstone reservoirs was conducted. Additionally, the research integrated diagenetic evolution sequences and the recovery of paleophysical properties to analyze the origins of reservoir densification and pore evolution in the Shan-1 Member. The results suggest that compaction is the primary factor contributing to reservoir densification, with burial depth playing a crucial role in determining the intensity of compaction. Cementation, particularly associated with illite, emerged as a significant influence on reservoir densification, while low dissolution also contributed to the densification process. The densification of the Shan-1 reservoir in the study area was estimated to have occurred during the Early Jurassic, approximately 195 Ma. These research findings not only enhance the understanding of the Shan-1 reservoir but also provide valuable insights for predicting tight reservoirs and improving the efficiency of oil and gas production.

Funder

National Science and Technology Major Program

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3