Maximal subgroups of the modular and other groups

Author:

Jones Gareth A.1

Affiliation:

1. School of Mathematical Sciences , University of Southampton , Southampton SO17 1BJ , United Kingdom

Abstract

Abstract In 1933 B. H. Neumann constructed uncountably many subgroups of SL 2 ( ) {{\rm SL}_{2}(\mathbb{Z})} which act regularly on the primitive elements of 2 {\mathbb{Z}^{2}} . As pointed out by Magnus, their images in the modular group PSL 2 ( ) C 3 * C 2 {{\rm PSL}_{2}(\mathbb{Z})\cong C_{3}*C_{2}} are maximal nonparabolic subgroups, that is, maximal with respect to containing no parabolic elements. We strengthen and extend this result by giving a simple construction using planar maps to show that for all integers p 3 {p\geq 3} , q 2 {q\geq 2} the triangle group Γ = Δ ( p , q , ) C p * C q {\Gamma=\Delta(p,q,\infty)\cong C_{p}*C_{q}} has uncountably many conjugacy classes of nonparabolic maximal subgroups. We also extend results of Tretkoff and of Brenner and Lyndon for the modular group by constructing uncountably many conjugacy classes of such subgroups of Γ which do not arise from Neumann’s original method. These maximal subgroups are all generated by elliptic elements, of finite order, but a similar construction yields uncountably many conjugacy classes of torsion-free maximal subgroups of the Hecke groups C p * C 2 {C_{p}*C_{2}} for odd p 3 {p\geq 3} . Finally, an adaptation of work of Conder yields uncountably many conjugacy classes of maximal subgroups of Δ ( 2 , 3 , r ) {\Delta(2,3,r)} for all r 7 {r\geq 7} .

Publisher

Walter de Gruyter GmbH

Subject

Algebra and Number Theory

Reference17 articles.

1. J. L. Brenner and R. C. Lyndon, Maximal nonparabolic subgroups of the modular group, Math. Ann. 263 (1983), no. 1, 1–11.

2. M. D. E. Conder, Generators for alternating and symmetric groups, J. Lond. Math. Soc. (2) 22 (1980), no. 1, 75–86.

3. M. D. E. Conder, More on generators for alternating and symmetric groups, Quart. J. Math. Oxford Ser. (2) 32 (1981), no. 126, 137–163.

4. B. Everitt, Alternating quotients of Fuchsian groups, J. Algebra 223 (2000), no. 2, 457–476.

5. G. A. Jones, Triangular maps and noncongruence subgroups of the modular group, Bull. Lond. Math. Soc. 11 (1979), no. 2, 117–123.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing the Robustness of Block Ciphers through a Graphical S-Box Evolution Scheme for Secure Multimedia Applications;2023-06-20

2. The Cayley Graph of Neumann Subgroups;Results in Mathematics;2021-04-11

3. Realisation of groups as automorphism groups in permutational categories;Ars Mathematica Contemporanea;2021-03-03

4. Joining Dessins Together;Galois Covers, Grothendieck-Teichmüller Theory and Dessins d'Enfants;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3