Prescribing Morse scalar curvatures: Critical points at infinity

Author:

Mayer Martin1

Affiliation:

1. University Tor Vergata , Via della Ricerca Scientifica 1 , Rome 00133 , Italy

Abstract

Abstract The problem of prescribing conformally the scalar curvature of a closed Riemannian manifold as a given Morse function reduces to solving an elliptic partial differential equation with critical Sobolev exponent. Two ways of attacking this problem consist in subcritical approximations or negative pseudogradient flows. We show under a mild nondegeneracy assumption the equivalence of both approaches with respect to zero weak limits, in particular a one-to-one correspondence of zero weak limit finite energy subcritical blow-up solutions, zero weak limit critical points at infinity of negative type and sets of critical points with negative Laplacian of the function to be prescribed.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference23 articles.

1. A. Bahri, Critical points at infinity in the variational calculus, Séminaire sur les équations aux dérivées partielles, 1985–1986, École Polytechnique, Palaiseau (1986), 1–31, Exp. No. 21.

2. A. Bahri, Critical Points at Infinity in Some Variational Problems, Pitman Res. Notes Math. Ser. 182, Longman Scientific & Technical, Harlow, 1989.

3. A. Bahri, An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension, Duke Math. J. 81 (1996), 323–466.

4. A. Bahri and J.-M. Coron, The scalar-curvature problem on the standard three-dimensional sphere, J. Funct. Anal. 95 (1991), no. 1, 106–172.

5. M. Ben Ayed and M. O. Ahmedou, Multiplicity results for the prescribed scalar curvature on low spheres, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008), no. 4, 609–634.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3