Prescribing Morse Scalar Curvatures: Blow-Up Analysis

Author:

Malchiodi Andrea1,Mayer Martin1

Affiliation:

1. Scuola Normale Superiore, Piazza dei Cavalieri 7, 50126 Pisa, Italy

Abstract

Abstract We study finite-energy blow-ups for prescribed Morse scalar curvatures in both the subcritical and the critical regime. After general considerations on Palais–Smale sequences, we determine precise blow-up rates for subcritical solutions: in particular the possibility of tower bubbles is excluded in all dimensions. In subsequent papers, we aim to establish the sharpness of this result, proving a converse existence statement, together with a one-to-one correspondence of blowing-up subcritical solutions and critical points at infinity. This analysis will be then applied to deduce new existence results for the geometric problem.

Funder

Scuola Normale Superiore

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference48 articles.

1. Perturbation of $\varDelta u+{u}^{\frac{\left (N+2\right )}{\left (N-2\right )}}=0$, the scalar curvature problem in ${\mathbb{R}}^N$ and related topics;Ambrosetti;J. Funct. Anal.,1999

2. Equations differentiélles non linéaires et Problème de Yamabe concernant la courbure scalaire;Aubin;J. Math. Pures Appl.,1976

3. An invariant for Yamabe type flows with applications to scalar curvature problems in higher dimensions;Bahri;Duke Math. J.,1996

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3