Estimation of permeability and saturation based on imaginary component of complex resistivity spectra: A laboratory study

Author:

Jia Jiang1,Ke Shizhen1,Li Junjian2,Kang Zhengming1,Ma Xuerui1,Li Manman1,Guo Jieyi3

Affiliation:

1. State Key Laboratory of Petroleum Resources and Prospecting, 102249, Beijing, China; College of Geophysics, China University of Petroleum-Beijing , 102249 , Beijing , China

2. Department of Exploration and Development, Shanghai Petroleum Co. Ltd. , 200041 , Shanghai , China

3. Natural Gas Economic Research Institute, Petro China Southwest Oil & Gas field Company , 610051 , Chengdu , China

Abstract

Abstract Low-frequency resistivity logging plays an important role in the field of petroleum exploration, but the complex resistivity spectrum of rock also contains a large amount of information about reservoir parameters. The complex resistivity spectra of 15 natural sandstone cores from western China, with different water saturations, were measured with an impedance analyzer. The pore space of each core was saturated with NaCl solution, and measurements were collected at a frequency range of 40–15 MHz. The results showed a linear relationship between the real resistivity at 1 kHz and the maximum values of imaginary resistivity for each core with different water saturations. The slopes of the linear best-fit lines had good linear relationships with the porosity and the permeability of cores. Based on this, a permeability estimation model was proposed and tested. In addition, the maxima of imaginary resistivity had power exponential relationships with the porosity and the water saturation of the cores. A saturation evaluation model based on the maxima of imaginary resistivity was established by imitating Archie’s formula. The new models were found to be feasible for determining the permeability and saturation of sandstone based on complex resistivity spectrum measurements. These models advance the application of complex resistivity spectrum in petrophysics.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3