Experimental Study on Impedance Spectrum-Based Detection of Water Holdup in Two-Phase Flow under Complex Salinity Conditions

Author:

Cheng Linfeng12ORCID,Ke Shizhen12ORCID,Shi Hongwei1ORCID,Zhang Yuhang1ORCID,Luo Hu1ORCID,Hu Hao1ORCID

Affiliation:

1. College of Geophysics, China University of Petroleum-Beijing, Beijing 102249, China

2. Well Logging Key Laboratory, China National Petroleum Corporation, Xi’an 710077, China

Abstract

In industrial production and water resource management involving fluid flows, two-phase flow measurement in complex environments has always been a research hotspot. In this study, a broadband detection device (40–110 MHz) suitable for two-phase flow in pipes was designed in a laboratory environment, the impedance response of two-phase flow was investigated under different salinity conditions and flow patterns, and a new impedance dispersion model suitable for two-phase flow in pipes was built. The experimental results show that the new model can better describe the rules of impedance dispersion in two-phase flow and is universally applicable, and that the equivalent solution resistance and interfacial polarization frequency have a stable functional relationship with water holdup. Based on the static experimental results, water holdup evaluation models for four flow patterns were established, and the dynamic detection results were predicted. The prediction results show that the new method proposed herein is not affected by changes in salinity and flow pattern when the flow pattern is known, and that its accuracy can meet the production requirements. This study expands the application range of traditional single-frequency conductivity detection techniques and provides a new idea for the development and improvement of systems for online detection of water holdup in two-phase flow.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3