Analysis, Assessment and Early Warning of Mudflow Disasters along the Shigatse Section of the China–Nepal Highway

Author:

Xiao Liming1,Zhang Yonghong1,Ge Taotao1,Wang Chen2,Wei Ming2

Affiliation:

1. School of Automation , Nanjing University of Information Science and Technology , 210044 Nanjing , China

2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters , Nanjing University of Information Science and Technology , 210044 Nanjing , China

Abstract

Abstract China–Nepal Highway is an important international passage connecting China and Nepal. Owing to its location in a complex mountainous area in the Qinghai– Tibet Plateau, the Shigatse section of the China–Nepal Highway is often impacted and troubled by mudflow. In order to effectively conduct road construction and maintenance and improve early disaster-warning capability, the relationship between various hazard factors and disaster points was analysed. It is found that four factors such as slope, precipitation, soil type and digital elevation have the strongest correlation with the occurrence of the disasters. From the distribution of disaster points, it is observed that the disaster point is closely related to the slope, its local correlation with precipitation is good and the its local correlation with the soil type and Digital Elevation Model (DEM) data is significant. In order to quantitatively evaluate the susceptibility of mudflow disasters in the Shigatse region, this paper uses the analytic hierarchy process (AHP) as the main analysis method supplemented by the fuzzy clustering method. The results show that the slope, when accompanied by heavy rainfall, is the most important factor among four factors. In this paper, the neural network method is used to establish the identification and early warning model of mudflow susceptibility. When the recognition rate reaches 66% or above, it can be used as an early-warning threshold for mudflow disasters. This study has conducted a useful exploration of the research, assessment and early warning of mudflow disasters along the Shigatse section of the China–Nepal Highway.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3