A prediction method for water enrichment in aquifer based on GIS and coupled AHP–entropy model

Author:

Duan Huijun12,Hao Shijun13,Feng Jie4,Wang Yi2,Peng Dong2

Affiliation:

1. China Coal Research Institute , Beijing 100013 , China

2. Department of Drilling Technology and Engineering, Xi’an Research Institute, China Coal Technology and Engineering Group , Xi’an 710077 , China

3. Xi’an Research Institute, China Coal Technology and Engineering Group, Research and development center , Xi’an 710077 , China

4. Department of Hydrogeology, China Coal Energy Research Institute Co Ltd , Xi’an , Shaanxi 710054 , China

Abstract

Abstract To prevent coal mine water disasters, the main objective of this study is to predict the water enrichment of the main aquifer in a coal mine of China that has been threatened by water inrush. The prediction is carried out using a geographic information system (GIS) and a coupled analytic hierarchy process (AHP) and entropy model. The flushing fluid consumption, burnt rock distribution, sand–shale ratio, and lithology structure index were determined as the main factors controlling the water enrichment of the aquifer. A thematic map of these main factors was constructed using the spatial data analysis functions of GIS and the data from a total of 146 drilling columns and field investigation. The weights of these controlling factors were calculated using the coupled model. A prediction map of the water enrichment of the aquifer was then developed by overlaying the thematic map with the weights of each controlling factor. The degree of water enrichment was finally divided into four levels for easy interpretation, where Level I denotes the highest water enrichment and poses the greatest threat of water disaster.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3