Study on Characteristic Raman Shift Screening Method Based on MPA for Raman Spectrum of Mine Water Inrush Source

Author:

Zhou Minghao1ORCID,Dai Rongying2ORCID

Affiliation:

1. School of Science, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China

2. School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China

Abstract

In the process of mine water inrush disaster prevention, accurate and rapid identification of water inrush source type is of great significance to coal mine safety production. However, traditional hydrochemical methods have shortcomings such as time-consuming and complex detection. Therefore, a new idea of identifying mine water inrush source by Raman spectroscopy is proposed. Goaf water, roof sandstone fissure water, Ordovician limestone water, Taiyuan limestone water, and surface water as well as their mixed water samples are selected as research objects, and Raman spectral data of different water samples are collected by the Raman spectroscopy system. To eliminate the influence of laser power fluctuation and spectrometer system noise in Raman spectrum acquisition, detrend correction (DC), multiplicative scatter correction (MSC), standard normal variate transformation (SNV), first derivative (FD), and mean centering (MC) were used to preprocess the raw Raman spectra. Due to the large dimension and long analysis time of Raman spectrum data, the marine predator algorithm (MPA) is used to screen the characteristic Raman shifts of the Raman spectrum of water samples, and the characteristic Raman shift information that can best characterize the mine water samples is obtained. Finally, to verify the feasibility of MPA screening the characteristic Raman shifts of Raman spectrum of mine water inrush source, the selected characteristic Raman displacement information is used as input to construct BP neural network (BP), k-nearest neighbor algorithm (KNN), support vector machine (SVM), and decision tree (DT) classification models, respectively. Experiments show that SNV has the best preprocessing effect on the raw Raman spectrum, which can effectively eliminate part of the noise in the Raman spectrum data and improve the accuracy of Raman spectrum identification. Using MPA, 226 characteristic Raman shifts can be screened from 2048 Raman data points, reducing the number of Raman shifts to 11.04%, and the modeling accuracy of characteristic Raman shift information screened by MPA is higher than that of full Raman data. In addition, the average analysis speed of BP, KNN, SVM, and DT water source identification models is 7.61 times faster than that of all Raman data. The results show that MPA is adopted to screen the characteristic Raman displacement of mine water source Raman spectrum, which can effectively reduce the redundancy of Raman spectral data and greatly improve the speed of Raman spectral analysis, which is of great significance to ensure the real-time detection of the mine water source.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3