Improved gas sand facies classification and enhanced reservoir description based on calibrated rock physics modelling: A case study

Author:

Shakir Urooj12,Ali Aamir1,Amjad Muhammad Raiees2,Hussain Muyyassar13

Affiliation:

1. Department of Earth Sciences, Quaid-i-Azam University , 45320 , Islamabad , Pakistan

2. Department of Earth and Environmental Sciences, Bahria University , Islamabad , 44000 , Pakistan

3. Advance Reservoir Characterization, LMK Resources , Sector I9/4 , Islamabad , 44000 , Pakistan

Abstract

Abstract Rock physics provides a dynamic tool for quantitative analysis by developing the basic relationship between fluid, lithological, and depositional environment of the reservoir. The elastic attributes such as impedance, density, velocity, V p/V s ratio, Mu-rho, and Lambda-rho are crucial parameters to characterize reservoir and non-reservoir facies. Rock physics modelling assists like a bridge to link the elastic properties to petrophysical properties such as porosity, facies distribution, fluid saturation, and clay/shale volume. A robust petro-elastic relationship obtained from rock physics models leads to more precise discrimination of pay and non-pay facies in the sand intervals of the study area. The Paleocene aged Lower Ranikot Formation and Pab sandstone of Cretaceous age are proven reservoirs of the Mehar gas field, Lower Indus Basin. These sands are widely distributed in the southwestern part of the basin and are enormously heterogeneous, which makes it difficult to distinguish facies and fluid content in the reservoir intervals. So, an attempt is made in this paper to separate the reservoir facies from non-reservoir facies by using an integrated approach of the petro-elastic domain in the targeted sand intervals. Furthermore, missing logs (S-sonic and P-sonic) were also synthesized in the wells and missing intervals along with improving the poor quality of the density log by captivating the washouts and other side effects. The calibrated rock physics model shows good consistency between measured and modelled logs. Petro-elastic models were predicted initially using petrophysical properties and incorporated at true reservoir conditions/parameters. Lithofacies were defined based on petrophysical cut-offs. Rock physics modelled elastic properties (Lambda-rho versus Mu-rho, impedance versus V p/V s ratio) were then cross-plotted by keeping lithofacies in the Z-axis. The cross-plots clearly separated and demarcated the litho-fluid classes (wet sand, gas sand, shale, and limestone) with specific orientation/patterns which were randomized in conventional petrophysical analysis.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3